1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
cristinadougla edited this page 2025-04-06 17:27:54 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to boost reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A key identifying feature is its reinforcement learning (RL) step, which was utilized to refine the model's responses beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adjust more successfully to user feedback and objectives, eventually improving both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, indicating it's equipped to break down intricate questions and factor through them in a detailed manner. This assisted reasoning procedure allows the model to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has caught the market's attention as a versatile text-generation model that can be incorporated into different workflows such as representatives, rational thinking and information interpretation tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion parameters, enabling efficient reasoning by routing queries to the most relevant professional "clusters." This method allows the model to concentrate on various issue domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient designs to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, using it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this model with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent hazardous content, and evaluate models against crucial safety criteria. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limit boost, develop a limitation boost request and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For directions, see Establish permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid damaging material, and examine models against essential safety requirements. You can execute safety measures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to evaluate user inputs and design reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and choose the DeepSeek-R1 model.

The model detail page offers vital details about the model's capabilities, prices structure, and implementation standards. You can find detailed use guidelines, including sample API calls and code snippets for combination. The design supports numerous text generation jobs, consisting of material production, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT reasoning capabilities. The page likewise consists of implementation options and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a number of circumstances (between 1-100). 6. For Instance type, pick your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up sophisticated security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function authorizations, and encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you might wish to examine these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive user interface where you can explore different prompts and adjust model parameters like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, content for inference.

This is an excellent method to check out the model's reasoning and text generation abilities before integrating it into your applications. The play ground offers instant feedback, assisting you understand how the model reacts to different inputs and letting you tweak your triggers for optimal results.

You can rapidly test the design in the play ground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a demand to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient approaches: using the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you select the approach that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model internet browser displays available models, with details like the service provider name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card reveals crucial details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to see the model details page.

    The design details page consists of the following details:

    - The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the model, it's recommended to review the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the automatically produced name or develop a custom one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the variety of instances (default: 1). Selecting suitable instance types and trademarketclassifieds.com counts is vital for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for accuracy. For this model, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the design.

    The deployment process can take a number of minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the design is all set to accept inference requests through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is complete, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:

    Tidy up

    To prevent undesirable charges, complete the actions in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases.
  5. In the Managed implementations section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative options using AWS services and sped up compute. Currently, he is concentrated on developing methods for fine-tuning and enhancing the reasoning efficiency of big language designs. In his downtime, Vivek enjoys treking, watching movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing services that assist clients accelerate their AI journey and unlock business value.